Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur Urol Oncol ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37925349

RESUMEN

CONTEXT: Computational pathology is a new interdisciplinary field that combines traditional pathology with modern technologies such as digital imaging and machine learning to better understand the diagnosis, prognosis, and natural history of many diseases. OBJECTIVE: To provide an overview of digital and computational pathology and its current and potential applications in renal cell carcinoma (RCC). EVIDENCE ACQUISITION: A systematic review of the English-language literature was conducted using the PubMed, Web of Science, and Scopus databases in December 2022 according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PROSPERO ID: CRD42023389282). Risk of bias was assessed according to the Prediction Model Study Risk of Bias Assessment Tool. EVIDENCE SYNTHESIS: In total, 20 articles were included in the review. All the studies used a retrospective design, and all digital pathology techniques were implemented retrospectively. The studies were classified according to their primary objective: detection, tumor characterization, and patient outcome. Regarding the transition to clinical practice, several studies showed promising potential. However, none presented a comprehensive assessment of clinical utility and implementation. Notably, there was substantial heterogeneity for both the strategies used for model building and the performance metrics reported. CONCLUSIONS: This review highlights the vast potential of digital and computational pathology for the detection, classification, and assessment of oncological outcomes in RCC. Preliminary work in this field has yielded promising results. However, these models have not yet reached a stage where they can be integrated into routine clinical practice. PATIENT SUMMARY: Computational pathology combines traditional pathology and technologies such as digital imaging and artificial intelligence to improve diagnosis of disease and identify prognostic factors and new biomarkers. The number of studies exploring its potential in kidney cancer is rapidly increasing. However, despite the surge in research activity, computational pathology is not yet ready for widespread routine use.

2.
Diagnostics (Basel) ; 13(16)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37627935

RESUMEN

Deep learning (DL), often called artificial intelligence (AI), has been increasingly used in Pathology thanks to the use of scanners to digitize slides which allow us to visualize them on monitors and process them with AI algorithms. Many articles have focused on DL applied to prostate cancer (PCa). This systematic review explains the DL applications and their performances for PCa in digital pathology. Article research was performed using PubMed and Embase to collect relevant articles. A Risk of Bias (RoB) was assessed with an adaptation of the QUADAS-2 tool. Out of the 77 included studies, eight focused on pre-processing tasks such as quality assessment or staining normalization. Most articles (n = 53) focused on diagnosis tasks like cancer detection or Gleason grading. Fifteen articles focused on prediction tasks, such as recurrence prediction or genomic correlations. Best performances were reached for cancer detection with an Area Under the Curve (AUC) up to 0.99 with algorithms already available for routine diagnosis. A few biases outlined by the RoB analysis are often found in these articles, such as the lack of external validation. This review was registered on PROSPERO under CRD42023418661.

3.
Mod Pathol ; 36(11): 100304, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37580018

RESUMEN

BRCA1 and BRCA2 genes play a crucial role in repairing DNA double-strand breaks through homologous recombination. Their mutations represent a significant proportion of homologous recombination deficiency and are a reliable effective predictor of sensitivity of high-grade ovarian cancer (HGOC) to poly(ADP-ribose) polymerase inhibitors. However, their testing by next-generation sequencing is costly and time-consuming and can be affected by various preanalytical factors. In this study, we present a deep learning classifier for BRCA mutational status prediction from hematoxylin-eosin-safran-stained whole slide images (WSI) of HGOC. We constituted the OvarIA cohort composed of 867 patients with HGOC with known BRCA somatic mutational status from 2 different pathology departments. We first developed a tumor segmentation model according to dynamic sampling and then trained a visual representation encoder with momentum contrastive learning on the predicted tumor tiles. We finally trained a BRCA classifier on more than a million tumor tiles in multiple instance learning with an attention-based mechanism. The tumor segmentation model trained on 8 WSI obtained a dice score of 0.915 and an intersection-over-union score of 0.847 on a test set of 50 WSI, while the BRCA classifier achieved the state-of-the-art area under the receiver operating characteristic curve of 0.739 in 5-fold cross-validation and 0.681 on the testing set. An additional multiscale approach indicates that the relevant information for predicting BRCA mutations is located more in the tumor context than in the cell morphology. Our results suggest that BRCA somatic mutations have a discernible phenotypic effect that could be detected by deep learning and could be used as a prescreening tool in the future.


Asunto(s)
Aprendizaje Profundo , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Proteína BRCA2/genética , Proteína BRCA1/genética , Carcinoma Epitelial de Ovario/genética , Mutación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico
4.
Diagnostics (Basel) ; 13(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37238283

RESUMEN

BACKGROUND: Artificial Intelligence (AI)-based Deep Neural Networks (DNNs) can handle a wide range of applications in image analysis, ranging from automated segmentation to diagnostic and prediction. As such, they have revolutionized healthcare, including in the liver pathology field. OBJECTIVE: The present study aims to provide a systematic review of applications and performances provided by DNN algorithms in liver pathology throughout the Pubmed and Embase databases up to December 2022, for tumoral, metabolic and inflammatory fields. RESULTS: 42 articles were selected and fully reviewed. Each article was evaluated through the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool, highlighting their risks of bias. CONCLUSIONS: DNN-based models are well represented in the field of liver pathology, and their applications are diverse. Most studies, however, presented at least one domain with a high risk of bias according to the QUADAS-2 tool. Hence, DNN models in liver pathology present future opportunities and persistent limitations. To our knowledge, this review is the first one solely focused on DNN-based applications in liver pathology, and to evaluate their bias through the lens of the QUADAS2 tool.

5.
Diagnostics (Basel) ; 14(1)2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38201408

RESUMEN

Mismatch repair deficiency (d-MMR)/microsatellite instability (MSI), KRAS, and BRAF mutational status are crucial for treating advanced colorectal cancer patients. Traditional methods like immunohistochemistry or polymerase chain reaction (PCR) can be challenged by artificial intelligence (AI) based on whole slide images (WSI) to predict tumor status. In this systematic review, we evaluated the role of AI in predicting MSI status, KRAS, and BRAF mutations in colorectal cancer. Studies published in PubMed up to June 2023 were included (n = 17), and we reported the risk of bias and the performance for each study. Some studies were impacted by the reduced number of slides included in the data set and the lack of external validation cohorts. Deep learning models for the d-MMR/MSI status showed a good performance in training cohorts (mean AUC = 0.89, [0.74-0.97]) but slightly less than expected in the validation cohort when available (mean AUC = 0.82, [0.63-0.98]). Contrary to the MSI status, the prediction of KRAS and BRAF mutations was less explored with a less robust methodology. The performance was lower, with a maximum of 0.77 in the training cohort, 0.58 in the validation cohort for KRAS, and 0.82 AUC in the training cohort for BRAF.

6.
Front Plant Sci ; 13: 830069, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251102

RESUMEN

We observed differences in lhc classification in Chromista. We proposed a classification of the lhcf family with two groups specific to haptophytes, one specific to diatoms, and one specific to seaweeds. Identification and characterization of the Fucoxanthin and Chlorophyll a/c-binding Protein (FCP) of the haptophyte microalgae Tisochrysis lutea were performed by similarity analysis. The FCP family contains 52 lhc genes in T. lutea. FCP pigment binding site candidates were characterized on Lhcf protein monomers of T. lutea, which possesses at least nine chlorophylls and five fucoxanthin molecules, on average, per monomer. The expression of T. lutea lhc genes was assessed during turbidostat and chemostat experiments, one with constant light (CL) and changing nitrogen phases, the second with a 12 h:12 h sinusoidal photoperiod and changing nitrogen phases. RNA-seq analysis revealed a dynamic decrease in the expression of lhc genes with nitrogen depletion. We observed that T. lutea lhcx2 was only expressed at night, suggesting that its role is to protect \cells from return of light after prolonged darkness exposure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...